Tubular Surface Evolution for Segmentation of the Cingulum Bundle From DW-MRI
نویسندگان
چکیده
This work provides a framework for modeling and extracting the Cingulum Bundle (CB) from Diffusion-Weighted Imagery (DW-MRI) of the brain. The CB is a tube-like structure in the brain that is of potentially of tremendous importance to clinicians since it may be helpful in diagnosing Schizophrenia. This structure consists of a collection of fibers in the brain that have locally similar diffusion patterns, but vary globally. Standard region-based segmentation techniques adapted to DW-MRI are not suitable here because the diffusion pattern of the CB cannot be described by a global set of simple statistics. Active surface models extended to DW-MRI are not suitable since they allow for arbitrary deformations that give rise to unlikely shapes, which do not respect the tubular geometry of the CB. In this work, we explicitly model the CB as a tube-like surface and construct a general class of energies defined on tube-like surfaces. An example energy of our framework is optimized by a tube that encloses a region that has locally similar diffusion patterns, which differ from the diffusion patterns immediately outside. Modeling the CB as a tube-like surface is a natural shape prior. Since a tube is characterized by a center-line and a radius function, the method is reduced to a 4D (center-line plus radius) curve evolution that is computationally much less costly than an arbitrary surface evolution. The method also provides the center-line of CB, which is potentially of clinical significance.
منابع مشابه
Near-tubular fiber bundle segmentation for diffusion weighted imaging: Segmentation through frame reorientation
This paper proposes a methodology to segment near-tubular fiber bundles from diffusion weighted magnetic resonance images (DW-MRI). Segmentation is simplified by locally reorienting diffusion information based on large-scale fiber bundle geometry. Segmentation is achieved through simple global statistical modeling of diffusion orientation. Utilizing a modification of a recent segmentation appro...
متن کاملTubular Fiber Bundle Segmentation for Diffusion Weighted Imaging
This paper proposes a methodology to segment tubular fiber bundles from diffusion weighted magnetic resonance images (DW-MRI). Segmentation is simplified by locally reorienting diffusion information based on large-scale fiber bundle geometry. Segmentation is achieved through simple global statistical modeling of diffusion orientation. Utilizing a modification of a recent segmentation approach b...
متن کاملAssessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation
Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...
متن کاملFuzzy Nonparametric DTI Segmentation for Robust Cingulum-Tract Extraction
This paper presents a novel segmentation-based approach for fiber-tract extraction in diffusion-tensor (DT) images. Typical tractography methods, incorporating thresholds on fractional anisotropy and fiber curvature to terminate tracking, can face serious problems arising from partial voluming and noise. For these reasons, tractography often fails to extract thin tracts with sharp changes in or...
متن کاملAutomatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کامل